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Analytic results for scaling function and moments for a different type of avalanche
in the Bak-Sneppen evolution model

W. Li* and X. Cai†

Institute of Particle Physics, Hua-Zhong Normal University, Wuhan 430079, People’s Republic of China
~Received 5 June 2000!

Starting from the master equation for the hierarchical structure of avalanches of a different kind within the
frame of the Bak-Sneppen evolution model, we derive the exact formula of the scaling function describing the
probability distribution of avalanches. The scaling function displays features required by the scaling ansatz and
verified by simulations. Using the scaling function we investigate the avalanche moment, denoted by^Sk&D f̄ .

It is found that for any non-negative integerk, ^Sk&D f̄ diverges asD f̄ 2k, which gives an infinite group of exact
critical exponents. Simulation outcomes of avalanche moments withk51,2,3, are found to be consistent with
the corresponding analytical results.

PACS number~s!: 05.40.2a, 64.60.Ak, 87.10.1e
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I. INTRODUCTION

The Bak-Sneppen~BS! evolution model@1# has become
one of the most interesting models that display the natur
self-organized criticality~SOC! @2#. The BS model mimics
the biological evolution in a very simple but most charact
ized way:Ld species are located on ad-dimensional lattice of
linear sizeL. Initially, Ld random numbers chosen from a fl
distribution between 0 and 1,D( f ), are assigned indepen
dently to each species as fitness. At each time step, the g
extremal site, i.e., the species with the smallest fitness wi
the system, and its 2d nearest neighbors are assigned n
random numbers also chosen fromD( f ). After enormous
updates the system reaches a statistically stationary
where the density of the fitnesses in the system is unifo
above f c ~the self-organized threshold! and vanishes forf
, f c .

The BS model exhibits remarkably rich behaviors throu
the evolution based on an oversimplified rule, which is co
monly shared by a wide class of extremal models@3#. These
models evolve through the updating of global extremum
some variable and can be automatically attracted to the c
cal states by long processes of the so-called s
organization. In this class of models, the BS model m
occupy a unique position since it is analytically treatable
many cases.

The most intriguing feature of the BS model is its abili
to self-organize to a stationary critical state specified b
robust probability distribution of scale-free bursts of activ
or avalanches. Larger avalanches consist of smaller ones
so on, which form a hierarchical structure, similar to tho
observed in fractals ubiquitous in nature@4#. It has been pro-
posed by Paczuski, Maslov, and Bak@5# that the BS model
and some other extremal models, together with many nat
phenomena, can be unified on a common mechanis
avalanche dynamics, and that they are related via sca
relations to the fractal properties of the configurations car
by avalanches.
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As mentioned above, avalanche study plays a key role
comprehending the dynamics of the BS model. It is feasi
to search for different hierarchy of avalanches in the
model, whereas they manifest the same hierarchy—SO
from various contexts@6#. Indeed, we have observed man
different kinds of avalanches in the BS model@1,5,6#. In this
paper, the avalanches originally defined in Ref.@1#, f 0 ava-
lanches@5# and f̄ 0 avalanches@6#, will be called BS ava-
lanches, PMB avalanches and LC avalanches, respectiv

As is known, in SOC models~e.g., the sandpile model@2#,
the BS model@1#!, the probability distribution of avalanche
of sizeSobeys a power law:P(S)5S2th@F(S)#, where the
scaling functionh(x) decreases rapidly asx@1 and ap-
proaches a constant asx→0. Up to now, despite that this
scaling ansatz for various models has been verified by ex
sive simulations@1,7–11#, the concrete form ofh(x) re-
mains vague. This paper will show that for probability di
tribution of LC avalanches, the explicit form of th
corresponding scaling function can be analytically derive

In Sec. II, we briefly recall three different kinds of ava
lanches: BS avalanches, PMB avalanches, and LC a
lanches. The scaling function for LC avalanches will
given in Sec. III. Avalanche moments for LC avalanches
investigated in Sec. IV. The last section is the conclusion

II. THREE KINDS OF AVALANCHES

This section will review three different types of ava
lanches: BS avalanches, PMB avalanches, and LC a
lanches. We will see that though these avalanches may d
from each other in some aspects, they all embody fundam
tal features of avalanches: compactness and hierarch
structure. In general, however, each kind of avalanche oc
pies its unique position.

A. Avalanches of the BS kind†1‡

BS avalanches were observed when the BS model
first introduced@1#. Let the well-defined BS model start t
evolve. With the evolution of the model, the lowest barrie
i.e., the smallest fitness within the system, tends to incre
stepwisely. It is found that all mutations turn out to ta
7743 ©2000 The American Physical Society
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place through barriers less thanf c50.6760.01. Below some
threshold smaller than or equal tof c , long periods of pas-
sivity interrupted by sudden bursts of activity are observ
The punctuated equilibria emerge.

An effective way to characterize this intermittency is
monitor subsequent sequences, or avalanches, of muta
through barriers below a certain threshold. If there is no m
tation for a time period defined by this threshold, the a
lanches stop. The sizeS of an avalanche is the number o
successive updates below the threshold. Thus, due to
definition, there is a hierarchy of avalanches, each define
their respective thresholds. The critical exponentt for the
probability distribution of BS avalanches with threshold 0.
is found to be 0.960.1 for the 1D BS model.

B. Avalanches of the PMB kind †5‡

The idea of f 0 avalanches, i.e., PMB avalanches, orig
nated from BS avalanches. The only difference betw
them is thatf 0 is introduced in the former. The revolutionar
PMB avalanches greatly put forward our understanding
the dynamics of the evolution model.

f 0, between 0 and 1, is an auxiliary parameter in defin
avalanches. In the critical state, PMB avalanches can be
fined as follows. Suppose at time steps the fitness of the
global extremal site in the ecosystem is greater thanf 0. After
an update, each new random numbers introduced at the s
time step can be less thanf 0 with probability f 0. If one or
more random numbers is less thanf 0, the smallest of those
will be chosen for the next update at time steps11. This
update mechanism intrigues a creation-annihilation bran
ing process where the species with fitness smaller thanf 0
play the key role. If there is at least a species with fitness
than f 0 in the system at the consequential time step,
avalanche will continue. The avalanche terminates, say
time stepS1s, when the smallest fitness is abovef 0 for the
first time after time steps, whereS is the size of the ava
lanche. The hierarchical structure of the PMB avalanches
be displayed by plotting the fitnesses of the global extre
sites versus the time steps.

The value off 0 directly determines the probability distr
bution of PMB avalanches. Whenf 0 is not equal tof c , the
self-organized threshold, the statistics of PMB avalanc
acquire a limited cutoff. The closerf 0 approaches tof c , the
larger the expected avalanche size will be. One can o
expect to observe infinite avalanches whenf 05 f c . And, it
has been confirmed that a PMB avalanche in the station
state is totally equivalent to the counterpart in the branch
process@12#. This feature facilitates the simulations of PM
avalanches, which give the critical exponentst for the prob-
ability distribution of PMB avalanches whenf 0→ f c :1.07
and 1.245 for 1D and 2D BS models, respectively.

C. Avalanches of the LC kind †7‡

We have observed a different hierarchy of avalanchesf̄ 0
avalanches@6#, called LC avalanches in this paper. Analy
cal investigations of LC avalanches have been presente
Refs.@13,14#.

As is known, we intend to find a certain new quantity th
can reflect the general features of the ecosystem, and ex
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that the avalanches can be observed through it. The ave
fitness f̄ is what is being searched for.f̄ is naturally intro-
duced on the basis of the fitnesses of the species. It
represent the average population or living capability of
ecosystem. Largerf̄ implies that the average population
immense or the average living capability is great, and v
versa.f̄ is defined as

f̄ 5
1

Ld (
i 51

Ld

f i , ~1!

where f i is the fitness of thei th species in the system. A
each update of the evolution, apart from the random numb
of the globally extremal site and its 2d nearest-neighbor
sites, the signalf̄ is also monitored. Initially,f̄ tends to in-
crease like a staircase. As the evolution moves forwardf̄

approaches a critical valuef̄ c and remains statistically stabl
around f̄ c in the critical state. Numerical results give th
values off̄ c :0.834 and 0.664, for 1D and 2D models, respe
tively.

For any given value of the auxiliary parameterf̄ 0(0.5
, f̄ 0, f̄ c), an LC avalanche withf̄ 0 of sizeS is defined as a
sequence ofS21 successive mutation events whenf̄ (s)
, f̄ 0 confined between two mutation events whenf̄ (s). f̄ 0.
This definition properly embodies the spatiotemporal@15#

features of LC avalanches. Asf̄ 0 is raised, smaller ava
lanches merge into bigger ones, and asf̄ 0 decreases, large
avalanches split into smaller ones. The probability distrib
tion of LC avalanches will have a limited cutoff whenf̄ 0 is
not chosen to bef̄ c . However, whenf̄ 0 is extremely close to
f̄ c , the statistics of the avalanches are good enough. Si
lations show that critical exponentst for the probability dis-
tribution of LC avalanches are 1.800 and 1.725 for 1D a
2D BS models, respectively@6#, amazingly different than the
counterparts of PMB avalanches, 1.07 and 1.245@16#.

III. SCALING FUNCTION FOR THE PROBABILITY
DISTRIBUTION OF LC AVALANCHES

The hierarchical structure of LC avalanches can be p
scribed by the ‘‘master equation’’@17#. DenoteP( f̄ 0 ,S) as
the probability of acquiring an LC avalanche withf̄ 0 of size
S. As f̄ 0 is increased by an infinitesimal amount df̄ 0, the
signals f̄ ’s which terminate the LC avalanches withf̄ 0 may
not stop the LC avalanches withf̄ 01d f̄0. Hence, smaller
avalanches will merge to form bigger ones. Straightf
wardly, as f̄ 0 is decreased by some amount, larger a
lanches split into smaller ones. This picture appropriat
exhibits the hierarchical formations of the avalanches a
should be embodied in the master equation. In some se
the master equation reflects the flow of probability due to
change inf̄ 0, the parameter defining LC avalanches. Anoth
important aspect is the distribution of signalsf̄ ’s that termi-
nate LC avalanches. Simulations show that whenf̄ 0 is very
close to f̄ c , the signals serving as breaking points of L
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avalanches are uniformly distributed in (f̄ 0 , f̄ c) @13#.
Based on the above arguments, the probability of an

avalanche withf̄ 0 of size S merging into an LC avalanch
with f̄ 01d f̄0 of size greater thanS is given by
P(S, f̄ 0)d f̄0 /( f̄ c2 f̄ 0). Therefore, asf̄ 0 is increased by an
amountd f̄0, the ‘‘emission’’ ~negative change! in P(S, f̄ 0) is
P(S, f̄ 0)d f̄0 /( f̄ c2 f̄ 0), whereas the ‘‘absorption’’~positive
change! in P(S, f̄ 0) is (S051

S21 P(S2S0 , f̄ 0)P(S0 , f̄ 0)d f̄0 /( f̄ c

2 f̄ 0). Considering the limitd f̄0→0, one can immediately
write down the differential master equation for hierarchic
structure of LC avalanches as follows@13#:

] f̄ 0
P~S, f̄ 0!52~ f̄ c2 f̄ 0!21P~S, f̄ 0!

1 (
S051

S21

~ f̄ c2 f̄ 0!21P~S2S0 , f̄ 0!P~S0 , f̄ 0!,

~2!

where the first term on the right hand represents the los
avalanches of sizeS due to the merging of subsequent one
and the second one, the gain inP(S, f̄ 0) due to the merging
of avalanches of sizeS0 with avalanches of sizeS2S0.

The above master equation is of major interest. Based
the master equation, one can derive an infinite series of e
equations@13#. One can also write down two master equ
tions for undercritical and overcritical LC avalanches hier
chy respectively, and make an analytical investigation
comprehending the features of undercritical and overcrit
states@14#. These observations make us conjecture whe
we can attain a further understanding of the above-all ma
equation and find some new intriguing features we have
anticipated. The answer is positive.

To make more inspections, let us return to the mas
equation. Note that the equation relates the probability
tributions of LC avalanches for variousf̄ 0. Apparently, im-
posing the initial conditionP(S,1/2)5dS,1 ~i.e., 1 for S51
and 0 forS>1), one can readily obtain the probability di
tribution of LC avalanches by numerically integrating Eq.~2!

forward in f̄ 0. In doing so, one acquires the exponent of t
power-law distribution of LC avalanches and a by-prod
f̄ c . We do not follow such a method, however, despite tha
is feasible and may provide some useful information.
stead, we will provide an analytical method, which can a
enable us to understand what we have attempted to wit
losing anything important.

Define

u52 ln~ f̄ c2 f̄ 0!. ~3!

Since f̄ 0 is chosen to be very close tof̄ c , the variableu
varies from a finite large numberu0 to uc51`. Due to this,
the value ofu should be taken from the distribution ofe2u,
a more ‘‘natural’’ distribution, in contrast to the ‘‘uniform’’
one. The master equation for LC avalanches hierarchy ca
rewritten, in terms ofu, as,
C
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]uP~S,u!52P~S,u!1 (
S051

S21

P~S2S0 ,u!P~S0 ,u!. ~4!

Laplace transformation of P(S,u), i.e., p(a,u)
5(S51

` P(S,u)e2au, on both sides of Eq.~4!, leads to the
following equation:

]up~a,u!5p2~a,u!2p~a,u!. ~5!

As seen from Eq.~5!, the original coupled master equatio
@Eq. ~2!# now takes on a simple form.

It has been mentioned that iff̄ 0 is not equal tof̄ c , the
probability distribution of LC avalanches will have a limite
cutoff. In analogy to ordinary percolation@18# and directed
percolation@19#, we adopt the following scaling ansatz fo
the probability distributionP(S, f̄ 0) of LC avalanches of size
S,

P~S, f̄ 0!5S2tH„Ss~ f̄ c2 f̄ 0!…, ~6!

where the model dependent exponents describes the cutoff
of LC avalanches and is found to be 0.200 and 0.275 for
and 2D BS models, respectively@13#. Here, the scaling func-
tion H(x) approaches a constant whenx→0 and decays rap
idly when x@1. This scaling ansatz has been confirmed
our simulations.

With the scaling ansatz@Eq. ~6!# one can write down the
expression ofp(a,u) as

p~a,u!5 (
S51

`

e2aSS2tH~Sse2u!. ~7!

Here, f̄ 0 has been replaced byu. Replacing the sum with the
integral in Eq.~7! ~whenS→1`), after some algebra, on
obtains

p~a,u!512at21g~e2ua2s!, ~8!

where the scaling functiong(x) is related toH(x) by

g~x!5E
0

1`

@H~0!2H~xys!#e2yy2tdy. ~9!

Hence, if we understand features of the scaling funct
g(x), we will understand those ofH(x).

Define

z5e2ua2s. ~10!

Hence,uc51` corresponds tozc50. Combination of Eq.
~5! and Eq.~8! results in a differential equation ofg(z),

zg8~z!5at21g2~z!2g~z!. ~11!

The solution of Eq.~11! gives the explicit form of the scaling
function g(z),

g~z!5~z1at21!21. ~12!

As one can see, the expression ofg(z) has the desired
asymptotic form. Define

g~z!5~z2zc!
2bs, ~13!
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where we callbs the scaling exponent. Asa→0, g(z) be-
haves likez21, i.e., (z2zc)

21, which leads to

bs51. ~14!

The scaling exponentbs reflects the tendency of divergenc
of g(z) near the critical state.

By changing variablez back intoD f̄ 5 f̄ c2 f̄ 0 one obtains

g~a,D f̄ !5~D f̄ a2s1a21!21. ~15!

One sees thatg(a,D f̄ ) goes to a constant 1/at21 as the
critical state is approached, and decreases rapidly asf̄ 0 does.
Since in the BS model~1D and 2D as well! the exponentt
for LC avalanches size distribution is greater than 1@6#, one
can expect that for largera, the scaling functiong(a,D f̄ )
decreases more slowly. These features have been cl
demonstrated in Fig. 1, where we plotg(a,D f̄ ) versusD f̄
for variousa. What this figure manifests is consistent wi
what we had expected for the scaling function.

Making use of the formula of the scalingg(z), one can
immediately obtain the expression ofp(a,u),

p~a,u!512
at21

e2ua2s1at21
. ~16!

Considering the relation betweenu and f̄ 0, one sees tha
p(a,u) decreases asf̄ 0 increases, which means thatp(a,u)
attains its maximum at the first beginning of the evolutio
For clarity, we plotp(a,D f̄ ) versusD f̄ for variousa in Fig.
2. As shown, whena is taken to be 0, the normalization o
the probability distribution of LC avalanches, i.e.,p(0,u)
5(0

`P(S,u)51, is automatically restored.

IV. AVALANCHE MOMENTS FOR LC AVALANCHES

Evidently, the scaling functiong(x) @as well asH(x)# is
analytical atx50. At anyu,uc51`, p(a,u) is analytical

FIG. 1. The scaling functiong(a,D f̄ ) vs D f̄ for variousa. a is
taken to be 0.001, 0.002, 0.003, 0.004, and 0.005, respectively
rly

.

in a. Expansion of the expression ofp(a,u) through the
neighborhood ofa50 yields

(
S50

`
~21!k

k!
^Sk&uUa50ak5 (

S50

`
1

k!
p(k)~a,u!U

a50

ak,

~17!

wherep(k)(a,u) denotes thekth-order derivative ofp(a,u)
over a and^Sk&u is thekth-order avalanche moment for LC
avalanches. Since Eq.~17! holds for arbitrarya, comparison
of coefficients of different powers ofa results in an infinite
hierarchy of exact equations. Comparing coefficient ofak

gives thekth-order avalanche moment

^Sk&u5~21!kp(k)~a,u!ua50 . ~18!

FIG. 2. p(a,D f̄ ) vs D f̄ . Here, the values ofa for the curves
from the bottom to the top are 0.001, 0.002, 0.003, 0.004, 0.0
0.01, 0.02, and 0.03, respectively.

FIG. 3. ^Sk&D f̄(k51,2,3) vsD f̄ for LC avalanches in 1D BS
model. The respective slopes are21.01, 22.01, and23.02.
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For k50, the normalization of the probability distributio
of LC avalanches is restored. Fork51, one obtains

^S&D f̄;~ f̄ c2 f̄ 0!21, ~19!

which has been confirmed theoretically and numerica
@13#. Imposing the scaling relations1t52 @14# into Eq.
~18! and changingu back into D f̄ , one readily obtains an
amazing result,

^Sk&D f̄;~ f̄ c2 f̄ 0!2k. ~20!

This equation shows that avalanche moments diverge m
quickly with higher integerk. This feature can be directly
seen from the following form:

^Sk&D f̄;E
0

( f̄ c2 f̄ 0)21/s

S2tSkdS. ~21!

Introducing

^Sk&;~ f̄ c2 f̄ 0!2gk, ~22!

wheregk is the critical exponent governing the divergence
the kth-order avalanche moment, and comparing it with E
~20! yields

gk5k. ~23!

gk’s for variousk form an infinite group of exponents tha
specify the behaviors of avalanche moments of various
ders near the critical point. To check such results, simu
tions of avalanche moments withk51,2,3 for LC avalanches
are performed. The critical exponents obtained from
simulations are in good agreement with the correspond
analytical results, as shown in Fig. 3.

V. CONCLUSION

Compared to PMB avalanches, the newly observed
avalanches are more easily treated analytically. This is
.
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since many important exponents, e.g.,g, r @13#, and s,
which specify the dynamical features of the avalanches h
archy, and the scaling function, for LC avalanches can
exactly obtained through the fundamental master equat
Although one can also treat PMB avalanches analytica
@17#, it appears more difficult. This argument, however, do
not intend to deny the importance of PMB avalanches in
BS model. On the contrary, each kind of avalanches rem
unique. Only by combining all these different avalanch
could it be possible for one to comprehend the features of
model more completely. It appears feasible for one to inv
tigate the relationship between PMB avalanches and LC a
lanches, since both of them obey the power law. What int
sic relation lies between them is intriguing and interestin

It can be readily inferred that the master equation d
play an important role in the BS model. It can be regarded
the fundamental rule since it is written down just accordi
to the conservation of the probability distribution of av
lanches, without any additional ansatz, while many intere
ing features of the avalanche hierarchy can be derived f
the equation. This make us conjecture whether we can
such counterparts in other extremal models. If it is the ca
we may gain some new observations.

In summary, we derive the explicit form of the scalin
function for the probability distribution of LC avalanches b
using the master equation. The asymptotic behavior of
scaling function is in consistency with the scaling ansatz a
simulations. In the use of the scaling function, we investig
the behaviors of avalanche moments of various orders.
found that the critical exponents governing the divergence
avalanche moments of various orders form an infinite gro
$1,2,3, . . . ,k, . . . %. Simulations of avalanche moments wi
k51,2,3 verify the corresponding analytical results.
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