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Analytic results for scaling function and moments for a different type of avalanche
in the Bak-Sneppen evolution model
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Starting from the master equation for the hierarchical structure of avalanches of a different kind within the
frame of the Bak-Sneppen evolution model, we derive the exact formula of the scaling function describing the
probability distribution of avalanches. The scaling function displays features required by the scaling ansatz and
verified by simulations. Using the scaling function we investigate the avalanche moment, den¢gl, by
It is found that for any non-negative inteder S¥) ,7 diverges aAf %, which gives an infinite group of exact
critical exponents. Simulation outcomes of avalanche momentskwith 2,3, are found to be consistent with
the corresponding analytical results.

PACS numbegps): 05.40—a, 64.60.Ak, 87.10-e

[. INTRODUCTION As mentioned above, avalanche study plays a key role in

comprehending the dynamics of the BS model. It is feasible

The Bak-SneppeiiBS) evolution model[1] has become to search for different hierarchy of avalanches in the BS

one of the most interesting models that display the nature afodel, whereas they manifest the same hierarchy—SOC—

self-organized criticalitfSOQ [2]. The BS model mimics from various context§6]. Indeed, we have observed many

the biological evolution in a very simple but most character-different kinds of avalanches in the BS moflg)5,6. In this
i;ed wa.y:Ld spepies aLe located ordedimensional lattice of  paper, the avalanches originally defined in Héi, f, ava-
linear sizel. Initially, L® random numbers chosen from a flat lanches[5] and f, avalancheg6], will be called BS ava-

distribution between 0 an(_:i D(f), are asgigned indepen- Ia]nches, PMB avalanches and LC avalanches, respectively.
dently to each species as fitness. At each time step, the globa As is known, in SOC model.g., the sandpile modEg]

extremal site, i.e., the species with the smallest fitness Withi"?ne BS mode[1]), the probability distribution of avalanches
the system, and its® nearest neighbors are assigned news sizeSobeys a power lawP(S)=S""y[F(S)], where the

random numbers also chosen frdd(f). After enormous scaling function(x) decreases rapidly as>1 and ap-

updates the system reaches a statistically stationary st Soaches a constant as-0 Up to now, despite that this
where the density of the fitnesses in the system is unifor . i

; . caling ansatz for various models has been verified by exten-
abovef; (the self-organized thresholdénd vanishes fof o simulations[1,7—11, the concrete form ofy(x) re-
<f.. : - T L

- . . mains vague. This paper will show that for probability dis-
The BS model exhibits remarkably rich behaviors throughtriblutiox %l; LC Ia\[/)algncr\:\(lals thg explicit pform |c;fy thle

the ?volﬁtlon dbg\sed 0.3 anl oversf|mpllf|ed {ule, Véh'c_lr_‘h's Com'corresponding scaling function can be analytically derived.
monly shared by a wide class of extremal mod&ls These In Sec. I, we briefly recall three different kinds of ava-

models evolve through the updating of global extremum of ., \hes: BS avalanches. PMB avalanches. and LC ava-
some variable and can be automatically attracted to the Critil'anches- The scaling fun’ction for LC avala’nches will be

cal states by long processes of the so-called self:
organization. In this class of models, the BS model ma
occupy a unique position since it is analytically treatable in
many cases.

The most intriguing feature of the BS model is its ability IIl. THREE KINDS OF AVALANCHES

to self-organize to a stationary critical state specified by a This section will review three different types of ava-
robust probability distribution of scale-free bursts of activity |gnches: BS avalanches. PMB avalanches. and LC ava-

or avalanches. Larger avalanches consist of smaller ones afjthches. We will see that though these avalanches may differ
so on, which form a hierarchical structure, similar to thoseqom each other in some aspects, they all embody fundamen-

observed in fractals ubiquitous in natyrg. It has been pro- 5| features of avalanches: compactness and hierarchical
posed by Paczuski, Maslov, and BE that the BS model  gqicture. In general, however, each kind of avalanche occu-
and some other extremal models, together with many ”atur?iies its unique position.

phenomena, can be unified on a common mechanism—
avalanche dynamics, and that they are related via scaling
relations to the fractal properties of the configurations carved
by avalanches. BS avalanches were observed when the BS model was
first introduced[1]. Let the well-defined BS model start to
evolve. With the evolution of the model, the lowest barrier,
*Electronic address: liw@iopp.ccnu.edu.cn i.e., the smallest fitness within the system, tends to increase
"Electronic address: xcai@wuhan.cngb.com stepwisely. It is found that all mutations turn out to take

iven in Sec. Illl. Avalanche moments for LC avalanches are
Investigated in Sec. IV. The last section is the conclusion.

A. Avalanches of the BS kind[1]
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place through barriers less théy=0.67=0.01. Below some that the avalanches can be observed through it. The average
threshold smaller than or equal fg, long periods of pas- fitnessf is what is being searched fof.is naturally intro-
sivity interrupted by sudden bursts of activity are observedduced on the basis of the fitnesses of the species. It may
The punctuated equilibria emerge. represent the average population or living capability of the
An effective way to characterize this intermittency is to ecosystem. Large?implies that the average population is

monitor subsequent sequences, or avalanches, of mutatiomense or the average living capability is great, and vice
through barriers below a certain threshold. If there is N0 MUyersa f is defined as

tation for a time period defined by this threshold, the ava-

lanches stop. The siz8 of an avalanche is the number of 1 L
successive updates below the threshold. Thus, due to this == 2 fi, (1)
definition, there is a hierarchy of avalanches, each defined by L™ i=1

their respective thresholds. The critical exponenfor the _ _ . o
probability distribution of BS avalanches with threshold 0.65Where f; is the fitness of theth species in the system. At

is found to be 0.9 0.1 for the 1D BS model. each update of the evolution, apart from the random numbers
of the globally extremal site and itsd2nearest-neighbor
B. Avalanches of the PMB kind[5] sites, the signaf is also monitored. Initiallyf tends to in-

The idea off, avalanches, i.e., PMB avalanches, Origi_crease like a staircase. As the evolution moves forwérd,

nated from BS avalanches. The only difference betweeﬁpproac_hes a critical value and remains statistically stable

them is thatf, is introduced in the former. The revolutionary aroundf in the critical state. Numerical results give the
PMB avalanches greatly put forward our understanding of/alues off.:0.834 and 0.664, for 1D and 2D models, respec-
the dynamics of the evolution model. tively.

fo, between 0 and 1, is an auxiliary parameter in defining  For any given value of the auxiliary parametiy(0.5
avalanches. In the critical state, PMB avalanches can be d%f_o<f—) an LC avalanche Withi_o of sizeSis defined as a
c/»

fined as follows. Suppose at time steghe fitness of the . . —
global extremal site in the ecosystem is greater thamfter ~ SSJUENCe 0lS—1 successive mutation events Whé(s)
an update, each new random numbers introduced at the sarfidf o confined between two mutation events wgg) > fo.
time step can be less thdg with probability fo. If one or ~ This definition properly embodies the spatiotempdrE]
more random numbers is less thiy the smallest of those features of LC avalanches. Ak, is raised, smaller ava-

will be chosen for the next update at time s@pl. This  |anches merge into bigger ones, andfgslecreases, larger
update mechanism intrigues a creation-annihilation branchavalanches split into smaller ones. The probability distribu-

ing process where the species with fitness smaller fan (o of LC avalanches will have a limited cutoff whép is

play the key role. If there is at least a species with fitness Ies%Ot chosen to bé.. However wherf is extremelv close to
than fy in the system at the consequential time step, the— ¢ ' 0 y

avalanche will continue. The avalanche terminates, say, dt the statistics of the avalanches are good enough. Simu-
time stepS+s, when the smallest fitness is abofgfor the lations show that critical exponentsfor the probability dis-
first time after time stefs, whereS is the size of the ava- tribution of LC avalanc_hes are 1.800 and.1.725 for 1D and
lanche. The hierarchical structure of the PMB avalanches cafiP BS models, respective[$s], amazingly different than the

be displayed by plotting the fitnesses of the global extremafounterparts of PMB avalanches, 1.07 and 1.P4g.

sites versus the time steps.

The value offy directly determines the probability distri- ll. SCALING FUNCTION FOR THE PROBABILITY
bution of PMB avalanches. Whef is not equal tof, the DISTRIBUTION OF LC AVALANCHES
self-organized threshold, the statistics of PMB avalanches ) )
acquire a limited cutoff. The closdg, approaches td,, the The hierarchical structure of LC avalanches can be pre-

larger the expected avalanche size will be. One can onlgcribed by the “master equation[17]. DenoteP(_f_O,S) as
expect to observe infinite avalanches whgrr fc. And, it the probability of acquiring an LC avalanche wit of size
has b_een conflrme_d that a PMB avalanche_ln the stationary s f, is increased by an infinitesimal amountyd the
state is totally equivalent to the counterpart in the branchm%. IsF's which terminate the LC lanch Tt
procesg12]. This feature facilitates the simulations of PmMB >'9N&IST'S WhICh terminate the L% avalanches w b may
avalanches, which give the critical exponentor the prob-  not stop the LC avalanches withy+df,. Hence, smaller
ability distribution of PMB avalanches whefy— f,:1.07 avalanches will merge to form bigger ones. Straightfor-

and 1.245 for 1D and 2D BS models, respectively. wardly, asf, is decreased by some amount, larger ava-
lanches split into smaller ones. This picture appropriately
C. Avalanches of the LC kind [7] exhibits the hierarchical formations of the avalanches and

_ _ —  should be embodied in the master equation. In some sense,
We have observed a different hierarchy of avalanches, the master equation reflects the flow of probability due to the
avalanche$6], called LC avalanches in this paper. Analyti- change info, the parameter defining LC avalanches. Another

cal investigations of LC avalanches have been presented In . o L= .
Refs.[13,14) Important aspect is the distribution of signdls that termi-

As is known, we intend to find a certain new quantity thatnate LC avalanches. Simulations show that whgis very
can reflect the general features of the ecosystem, and expestose tof., the signals serving as breaking points of LC
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avalanches are uniformly distributed ifip(f.) [13]. st

Based on the above arguments, the probability of an LC dyP(S,u)=— P(S’u)+302:1 P(S—Sy,u)P(Sp,u). (4)
avalanche withf, of size S merging into an LC avalanche
with fo+df, of size greater thanS is given by Laplace transformation of P(S,u), i.e., p(a,u)
R R - — — — B —alu 1
P(S,fo)dfe/(f.—To). Therefore, ad, is increased by an = >s-1P(S;u)e “", on both sides of Eq(4), leads to the
3 A acinA ; : Ry following equation:
amountdfo, the “emission” (negative changen P(S,fo) is
P(S,fo)dfo/(fc—fp), whereas the “absorption’{positive dup(a,u)=p?(a,u)—p(a,u). (5)

changg in P(S,fp) is =2 1,P(S—Sy, o) P(Sy,fo)dfo/(fe . .
_ g¢ (Sfo) So=1 _( So:T0)P(So.To)dfo/ (T As seen from Eq(5), the original coupled master equation

—fo). Considering the limitdf,—0, one can immediately [Eq. (2)] now takes on a simple form.

write down the differential master equation for hierarchical

It has been mentioned that ff, is not equal tof_, the
structure of LC avalanches as folloys3]: b d ¢

probability distribution of LC avalanches will have a limited
cutoff. In analogy to ordinary percolatidi8] and directed
ﬂf_OP(S,f_o)= _(f_c_f_o)—lp(syf_o) percolation.['lg], 'We. adF)pt the_following scaling ansatz' for
o the probability distributiorP(S,f,) of LC avalanches of size
+ 2 (fo=To) P(S— S0, o) P(Sp. fo), _ o
o P(S,fo)=S H(S"(fc— o)), (®)
@ where the model dependent exponendescribes the cutoff
) ] of LC avalanches and is found to be 0.200 and 0.275 for 1D
where the first term on the right hand represents the loss g§nd 2D BS models, respectively3]. Here, the scaling func-
avalanches of siz&€ due to the merg_ing of subsequent ones.tjon H(x) approaches a constant whers0 and decays rap-
and the second one, the gainR{S,f,) due to the merging idly whenx>1. This scaling ansatz has been confirmed by
of avalanches of siz&, with avalanches of siz8—S,. our simulations.
The above master equation is of major interest. Based on With the scaling ansatiZq. (6)] one can write down the
the master equation, one can derive an infinite series of exaelkpression op(«,u) as
equationg 13]. One can also write down two master equa-
tions for undercritical and overcritical LC avalanches hierar- - S 1 U
chy respectively, and make an analytical investigation for p(a,u)=821 e “°S TH(S%e ). @)
comprehending the features of undercritical and overcritical
states[14]. These observations make us conjecture whethe,r_lere’f_0 has been replaced hy Replacing the sum with the

we can attain a further understanding of the above-alll Mast&htegral in Eq.(7) (whenS— +), after some algebra, one
equation and find some new intriguing features we have no i-ins ’ '

anticipated. The answer is positive.
To make more inspections, let us return to the master p(a,u)=1—a7‘1g(e‘“a“’), (8)

equation. Note that the equation relates the probability dis- _ _ _

tributions of LC avalanches for variodg. Apparently, im-  Where the scaling functiog(x) is related toH(x) by

posing the initial conditiorP(S,1/2)= 45, (i.e., 1 forS=1 o

and 0 forS=1), one can readily obtain the probability dis- g(x)zf [H(0)—H(xy?)]e Yy dy. (9)

tribution of LC avalanches by numerically integrating E2). 0

forward infg. In doing so, one acquires the exponent of theHence,

o if we understand features of the scaling function
power-law distribution of LC avalanches and a by—productg(x), we will understand those df(x).

f.. We do not follow such a method, however, despite that it Define
is feasible and may provide some useful information. In-
stead, we will provide an analytical method, which can also z=e "a 7. (10

enable us to understand what we have attempted to without o
losing anything important. Hence,u.= + corresponds t@.=0. Combination of Eg.

Define (5) and Eq.(8) results in a differential equation @f(z),
2g'(2)=a’"'g%(2)~ 9(2). (11)

The solution of Eq(11) gives the explicit form of the scaling
function g(2),

u=—In(f.—fo). 3

Since fy is chosen to be very close ty, the variableu
varies from a finite large numbeg, to u,= +c<0. Due to this,
the value ofu should be taken from the distribution ef”, AS one can see, the expressiong‘_(t) has the desired
a more “natural” distribution, in contrast to the “uniform”  asymptotic form. Define

one. The master equation for LC avalanches hierarchy can be

rewritten, in terms of, as, 9(2)=(z—2,) P, (13

g(2)=(z+ta™H L (12)
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FIG. 1. The scaling functiog(e,Af) vs Af for variouse. « is
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where we callB; the scaling exponent. As—0, g(z) be-
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FIG. 2. p(a,Af_) vs Af. Here, the values of for the curves
taken to be 0.001, 0.002, 0.003, 0.004, and 0.005, respectively. from the bottom to the top are 0.001, 0.002, 0.003, 0.004, 0.005,

haves likez™*, i.e., (z—z;) ~*, which leads to in a. Expansion of the expression @f a,u) through the
neighborhood ofx=0 yields
Bs=1. (14)
The scaling exponerg; reflects the tendency of divergence 5 (—1)k " . 1 ) "
of g(z) near the critical state. SZO Ki (S| a=o0e —SZO WP (a,u) a’,

By changing variabla back intoAf=f.— f, one obtains

g(a,Af_)Z(Af_a_‘T-l- a H L

One sees thag(a,Af_) goes to a constant @71 as the
critical state is approached, and decreases rapidfy dses.
Since in the BS modgllD and 2D as wellthe exponentr
for LC avalanches size distribution is greater tha6]l one

(19

can expect that for larges, the scaling functiorg(«,Af)
decreases more slowly. These features have been clearly
demonstrated in Fig. 1, where we plgfa,Af) versusAf

for various . What this figure manifests is consistent with

(SYy=(—1)*p®(a,u)|,=0.

0

17

wherep®(a,u) denotes théth-order derivative op(a,u)
over @ and(S¥),, is thekth-order avalanche moment for LC
avalanches. Since E(L7) holds for arbitrarya, comparison
of coefficients of different powers af results in an infinite
hierarchy of exact equations. Comparing coefficientadf
gives thekth-order avalanche moment

(18)

30

what we had expected for the scaling function.
Making use of the formula of the scalirg(z), one can
immediately obtain the expression pf«,u), 25

e
20— hTee

p(a,u)=1- (16)

efua,fa'_’_arfl

Considering the relation betweanand f,, one sees that

p(«a,u) decreases af, increases, which means thata,u) 10
attains its maximum at the first beginning of the evolution.
For clarity, we plotp(a,Af) versusAf for variousa in Fig.

2. As shown, whern is taken to be 0, the normalization of
the probability distribution of LC avalanches, i.g(0,u)
=37P(S,u)=1, is automatically restored.

<Sk>m'
o
TTT | TTTT | TTTT | TTTT | TTTT | TTTT

Ol b b b b bea b bens L 1
-54-52 -5 —48-46 -44-42 —4 -38-36

IV. AVALANCHE MOMENTS FOR LC AVALANCHES In (Af)

Evidently, the scaling functiog(x) [as well asH(x)] is
analytical atx=0. At anyu<u.= +», p(a,u) is analytical

FIG. 3. (S,7(k=1,2,3) vsAf for LC avalanches in 1D BS
model. The respective slopes arel.01, —2.01, and—3.02.
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Fork=0, the normalization of the probability distribution since many important exponents, e.g., p [13], and o,

of LC avalanches is restored. For=1, one obtains which specify the dynamical features of the avalanches hier-
— = archy, and the scaling function, for LC avalanches can be
(S)ar~(fc—fo) 7, (19 exactly obtained through the fundamental master equation.

which has been confirmed theoretically and numericallyAIthO.u gh one can alsp _treat PMB avalanches analytically
[13]. Imposing the scaling relation+ r=2 [14] into Eq [17], it appears more difficult. This argument, however, does
’ ) 7 — ) i ’ not intend to deny the importance of PMB avalanches in the
(18) and changingu back into Af, one readily obtains an pgg model. On the contrary, each kind of avalanches remains
amazing result, unique. Only by combining all these different avalanches
(S 57~ (f— Tk (20) could it be possible for one to comprehend the features of the

af c o model more completely. It appears feasible for one to inves-

This equation shows that avalanche moments diverge moiédate the relationship between PMB avalanches and LC ava-
quickly with higher integerk. This feature can be directly lanches, since both of them obey the power law. What intrin-
seen from the following form: sic relation lies between them is intriguing and interesting.

It can be readily inferred that the master equation does
play an important role in the BS model. It can be regarded as
the fundamental rule since it is written down just according
. to the conservation of the probability distribution of ava-
Introducing lanches, without any additional ansatz, while many interest-

N ing features of the avalanche hierarchy can be derived from
(S)~(fe—fo) ™7, (22 the equation. This make us conjecture whether we can find

wherev. is the critical exponent governing the diveraence Ofsuch counterparts in other extremal models. If it is the case,
Yk P 9 9 9 we may gain some new observations.

Egg)kt?é%ger avalanche moment, and comparing it with Eq. In summary, we derive the explicit form of the scaling
y function for the probability distribution of LC avalanches by

ye=k. (23) usin_g the master t_equatio_n. The a&_:ymptotic behavior of the

scaling function is in consistency with the scaling ansatz and

v’s for variousk form an infinite group of exponents that simulations. In the use of the scaling function, we investigate
specify the behaviors of avalanche moments of various orthe behaviors of avalanche moments of various orders. It is
ders near the critical point. To check such results, simulafound that the critical exponents governing the divergence of
tions of avalanche moments wiki+ 1,2,3 for LC avalanches avalanche moments of various orders form an infinite group
are performed. The critical exponents obtained from thg1,2,3 ... kK, ...}. Simulations of avalanche moments with
simulations are in good agreement with the correspondingg=1,2,3 verify the corresponding analytical results.
analytical results, as shown in Fig. 3.

K\ — (f_c_f_())il/a — rck
0

V. CONCLUSION ACKNOWLEDGMENTS

Compared to PMB avalanches, the newly observed LC This work was supported in part by the NSFC and Hubei-
avalanches are more easily treated analytically. This is trudlSF in China.

[1] P. Bak and K. Sneppen, Phys. Rev. L&tt, 4083(1993. [10] N. Martys, M.O. Robbins, and M. Cieplak, Phys. Rev4B
[2] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. L&%.381 12 294(199)).
(1987). [11] R. Bruinsma and G. Aeppli, Phys. Rev. LR, 1547(1984);
[3] S.I. Zaitsev, Physica A89 411 (1992; K. Sneppen, Phys. H. Ji and M.O. Robbins, Phys. Rev.45, 14 519(1992.
Rev. Lett.69, 3539(1992; L.-H. Tang and H. Leschhorihid. [12] M. Paczuski, S. Maslov, and P. Bak, Europhys. L&&, 97
70, 3832(1993. (1994.
[4] B.B. Mandelbrot,The Fractal Geometry of Naturg=reeman, [13] W. Li and X. Cai, Phys. Rev. B1, 5630(2000.
New York, 1983. [14] W. Li and X. Cai(unpublishegl
[5] M. Paczuski, S. Maslov, and P. Bak, Phys. RevbE 414  [15] Y.-C. Zhang, J. Phys. 1, 971(1991); H.C. Fogedby, J. Stat.
(1996 Phys.69, 411(1992.
[6] W. Li and X. Cai, Phys. Rev. B1, 771(2000. [16] P. Grassberger, Phys. Lett. 200, 277 (1995; B. Jovanovic,
[7] T.S. Ray and N. Jan, Phys. Rev. LetR, 4045(1994). S.V. Buldyrev, A. Havlin, and H.E. Stanley, Phys. Rev5&

[8] J. de Boer, B. Derrida, H. Flyvbjerg, A.D. Jackson, and T. 2403(1993.
Wettig, Phys. Rev. LetfZ3, 906(1994; J. de Boer, A.D. Jack- [17] S. Maslov, Phys. Rev. Let?7, 1182(1996.

son, and T. Wettig, Phys. Rev.®, 1059(1995. [18] D. Stauffer,Introduction to Percolation TheoryTaylor, Lon-
[9] L.-H. Tang and H. Leschhorn, Phys. Rev. Lef0, 3832 don, 1985; G. Grimmett,Percolation (Springer, New York,
(1993; H. Leschhorn and L.-H. Tang, Phys. Rev5E 1059 1989.

(1995. [19] J. FederFractals (Plenum, New York, 1989



